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Abstract
In this paper, we compute the partition function of 5D supersymmetric U(1)

gauge theory with extra adjoint matter in general � background. It is well
known that such partition functions encode very rich topological information.
We show in particular that unlike the case with no extra matter, the partition
function with extra adjoint at some special values of the parameters directly
reproduces the generating function for the Poincare polynomial of the moduli
space of instantons. We compare our results with those recently obtained
by Iqbal et al (Refined topological vertex, cylindric partitions and the U(1)

adjoint theory, arXiv:0803.2260), who used the so-called refined topological
vertex method.

PACS numbers: 11.15.−q, 11.30.Pb

1. Introduction

Recent progress in understanding non-perturbative phenomena in supersymmetric Yang–Mills
theories due to direct multi-instanton calculations is quite impressive. Two main ideas played
an essential role in all these developments. First was the realization that the supersymmetric
Yang–Mills action induced to the moduli space of instantons can be represented as an integral
over a closed, equivariant with respect to the diagonal part of the gauge group form [1]. This
observation leads to a crucial simplification reducing the SYM path integral to an integral
over the sub-manifold of the moduli space of instantons which is stable with respect to the
diagonal part of the gauge group. The next brilliant idea, which became the corner stone of
all further developments, was suggested by Nekrasov in [2]. The idea was to generalize the
theory involving into the game in equal footing with the already mentioned global diagonal
gauge transformations also the diagonal part of the (Euclidean) space-time rotations. This

1751-8113/09/304024+07$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/30/304024
mailto:poghos@yerphi.am
mailto:marine.samsonian@roma2.infn.it
http://stacks.iop.org/JPhysA/42/304024
http://www.arxiv.org/abs/


J. Phys. A: Math. Theor. 42 (2009) 304024 R Poghossian and M Samsonyan

is so crucial because the subset of the instanton moduli space invariant under this combined
group action consists only of a finite number of points.

In the case of the gauge group U(N), this fixed point set is in one-to-one correspondence
with the set of array of Young diagrams �Y = (Y1, . . . , YN) with total number of boxes | �Y | being
equal to the instanton charge k. Thus, to calculate the path integral for the various ‘protected’ by
super-symmetry physical quantities, one needs to know only the pattern of how the combined
group acts in the neighborhoods of the fixed point. All this information can be encoded in the
character of the group action in the tangent space at given fixed points. An elegant formula for
this character which played a significant role in both physical and mathematical applications
was proposed in [3] (see equation (2.1)). Let us note at once that combining space-time
rotations with the gauge transformations besides giving a huge computational advantage due
to the finiteness of the fixed point set has also a major physical significance generalizing the
theory to the case with certain non-trivial graviphoton backgrounds [2]. In order to recover
the standard flat space quantities (say the Seiberg–Witten prepotential of N = 2 super-Yang–
Mills theory), one should take the limit when the space-time rotation angles vanish. It is shown
by Nekrasov and Okounkov [4] that in this limit the sum over the arrays of Young diagrams
is dominated by a single array with specific ‘limiting shape’. As a result, it becomes possible
to handle the entire instanton sum expressing all relevant quantities in terms of emerging
Seiberg–Witten curve [5]. Note that only the entire sum but not its truncated part exhibits
remarkable modular properties which allows one to investigate the rich phase structure of
SYM theories. This is why all attempts to investigate the entire instanton sum also in a general
case (i.e. keeping finite the space-time rotation angles) seem quite natural. Unfortunately,
there was little progress till now in this direction besides the simplest case of the gauge
group U(1). Though the U(1) 4D theory in flat background is trivial, the general 5D U(1)

theories compactified on a circle3 being rather non-trivial nevertheless in many cases admit
full solution. In what follows, we investigate the partition function of 5D gauge theory with
an extra adjoint hypermultiplet. It is not surprising that such partition functions encode very
rich topological information. As a manifestation we argue that unlike the case with no extra
matter, at some special values of the parameters this partition function directly reproduces
the generating function of the Poincare polynomial for the moduli space of instantons. We
check this conclusion explicitly computing the partition function in the case of the gauge
group U(1). We compare our result with that recently obtained by Iqbal et al [6] who used
the refined topological vertex method [12] to find the same partition function and present our
comments on discrepancies we found. See [13] for an earlier attempt to construct a refined
version of the topological vertex.

2. The U (1) theory with adjoint matter

The weight decomposition of the torus action on the tangent space at the fixed point �Y =
(Y1, . . . , YN) is given by [3]

χ =
N∑

α,β=1

eβe−1
α

⎧⎨
⎩

∑
s∈Yα

(
T

−lβ (s)

1 T
aα(s)+1

2

)
+

∑
s∈Yβ

(
T

lα(s)+1
1 T

−aβ(s)

2

)⎫⎬⎭ , (2.1)

where e1, . . . , eN are the elements of (complexified) maximal torus of the gauge group
U(N), T1, T2 belong to the maximal torus of the (Euclidean) space-time rotations and aα(s)

3 Roughly speaking the main technical difference between 4D and 5D cases is that in the former case the above-
mentioned combined group enters into the game in the infinitesimal level while in the latter case the main roles are
played by the finite group elements.
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(lα(s)) measures the distance from the location of the box s to the edge of the Young diagram
Yα in the vertical (horizontal) direction.

The 5D partition function in the pure N = 2 theory could be read off from the above
character, formula (2.1)

Z =
∑

�Y

q| �Y |∏N
α,β=1

∏
s∈Yα

(
1 − eβe−1

α T
−lβ (s)

1 T
aα(s)+1

2

)∏
s∈Yβ

(
1 − eβe−1

α T
lα(s)+1

1 T
−aβ(s)

2

) (2.2)

From the mathematical point of view this quantity could be regarded as the character of
the torus action on the space of holomorphic functions of the moduli space of instantons.
The Nekrasov’s partition function for 4D theory could be obtained tuning the parameters
q → β2N q, T1 → exp −βε1, T2 → exp −βε2, eα → −βvα and tending β → 0, where
v1, . . . , vN are the expectation values of the chiral superfield and ε1, ε2 characterize the
strength of the graviphoton background (sometimes called the � background).

Fortunately, instanton counting is powerful enough to handle also the cases when an extra
hypermultipet in adjoint or several fundamental hypermultiplets are present. In the case with
an adjoint hypermultiplet instead of (2.1), one starts with the (super) character [7]

χ = (1 − Tm)

N∑
α,β=1

eβe−1
α

⎧⎨
⎩

∑
s∈Yα

(
T

−lβ (s)

1 T
aα(s)+1

2

)
+

∑
s∈Yβ

(
T

lα(s)+1
1 T

−aβ(s)

2

)⎫⎬⎭ . (2.3)

One way to interpret this character is to imagine that each (complex) 1d eigenspace of the
torus action is complemented by a grassmanian eigenspace with exactly the same eigenvalues
of the torus action. In addition, an extra U(1) action is introduced so that Tm ∈ U(1) acts
trivially on bosonic directions while on each grassmanian coordinate it acts in its fundamental
representation. Then (2.3) is the super-trace of the extended torus action on the super-tangent
space at given fixed point. The corresponding 5D partition function now reads

Z =
∑

�Y
q|Y |

N∏
α,β=1

∏
s∈Yα

(
1 − Tmeβe−1

α T
−lβ (s)

1 T
aα(s)+1

2

)
(
1 − eβe−1

α T
−lβ (s)

1 T
aα(s)+1

2

) ∏
s∈Yβ

(
1 − Tmeβe−1

α T
lα(s)+1

1 T
−aβ (s)

2

)
(
1 − eβe−1

α T
lα(s)+1

1 T
−aβ(s)

2

)
(2.4)

Each term here could be thought of as a trace over the space of local holomorphic forms, with
parameter Tm counting the degrees of forms. Hence, the sum over the fixed points is expected
to give the super-trace over the globally defined holomorphic forms. We see that Zadj is an
extremely rich quantity from both physical and mathematical points of view. It is interesting
to note that at special values of the parameters Zadj directly reproduces the generating function
for the Poincare polynomial of the moduli space of U(N) instantons. Indeed, following [8]
part (3.3) let us assume that T2 � Ta1 > · · · > TaN

� T1 > 0. It is easy to see that in the limit
when all these parameters go to zero each fraction under the products in (2.4) tends to Tm or
1 depending on whether we have a negative weight direction or not (see the classification of
negative directions in [8], proof of corollary 3.10). We will see this explicitly in the simplest
case N = 1 when the moduli space of instantons coincides with the Hilbert scheme of points
on C

2.
From now on we will restrict ourselves to the simplest case of the U(1) gauge group,

when the partition function could be computed in a closed way. The partition function of the
pure N = 2, U(1) theory has the form [9]

Z =
∑
Y

q|Y |∏
s∈Y

(
1 − T

−l(s)
1 T

a(s)+1
2

)(
1 − T

l(s)+1
1 T

−a(s)
2

)
3
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= exp

( ∞∑
n=1

qn

n
(
1 − T n

1

)(
1 − T n

2

)
)

. (2.5)

This remarkable combinatorial identity in the 4D limit and in the ‘self dual’ case ε1 = −ε2

boils down to the Burnside’s theorem∑
|λ|=n

(dim Rλ)
2 = n!, (2.6)

where Rλ is the irreducible representation of the symmetric group given by the Young
diagram λ.

Now let us turn to the U(1) theory with adjoint matter. Doing low instanton calculations
using (2.4) is straightforward and gives

log Zadj = q
(
1 + Tmq + T 2

mq2 + T 3
mq3

)
(1 − TmT1)(1 − TmT2)

(1 − T1)(1 − T2)

+
q2

(
1 + T 2

mq2
)(

1 − T 2
mT 2

1

)(
1 − T 2

mT 2
2

)
2
(
1 − T 2

1

)(
1 − T 2

2

) +
q3

(
1 − T 3

mT 3
1

)(
1 − T 3

mT 3
2

)
3
(
1 − T 3

1

)(
1 − T 3

2

)
+

q4
(
1 − T 4

mT 4
1

)(
1 − T 4

mT 4
2

)
4
(
1 − T 4

1

)(
1 − T 4

2

) + O(q4). (2.7)

These drove us to the conjecture that the exact formula is

log Zadj =
∞∑

n=1

qn
(
1 − T n

mT n
1

)(
1 − T n

mT n
2

)
n
(
1 − T n

1

)(
1 − T n

2

)(
1 − T n

mqn
) , (2.8)

which is equivalent to the following highly non-trivial combinatorial identity:

Zadj =
∑
Y

q|Y | ∏
s∈Y

(
1 − TmT

−l(s)
1 T

a(s)+1
2

)(
1 − TmT

l(s)+1
1 T

−a(s)
2

)
(
1 − T

−l(s)
1 T

a(s)+1
2

)(
1 − T

l(s)+1
1 T

−a(s)
2

)
= exp

( ∞∑
n=1

qn(1 − (TmT1)
n)(1 − (TmT2)

n)

n
(
1 − T n

1

)(
1 − T n

2

)
(1 − (Tmq)n)

)
. (2.9)

Indeed, calculations with Mathematica code up to 10 instantons further convinced us that
this formula is indeed correct. Note that the 4D limit of this identity with a particular choice
of the graviphoton background ε1 = −ε2 is mentioned earlier in [4] and was used later in [10]
to calculate the expectation value tr〈φ2〉.

As a further check, let us go to the limit when T1 → 0, T2 → 0. As we have explained
above, one expects to find the generating function of Poincare polynomial for the Hilbert
scheme of points on C

2. An easy calculation yields

Zadj|T1,T2=0 = exp
∞∑

n=1

qn

n
(
1 − T n

mqn
) = exp

∞∑
n=1

∞∑
k=0

(
q1+kT k

m

)n

n
=

∞∏
k=0

1

1 − T k
mqk+1

, (2.10)

which indeed after identifying Tm with Poincare parameter t2 reproduces the well-known result
(see e.g. [11]). Now let us go back to the general case. In various domains of the variables
T1, T2 we can represent (2.8) as an infinite product as we did in the special case in (2.10). Let
us consider separately the cases:

(a) |T1| < 1, |T2| < 1, |Tmq| < 1
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In this region (2.8) could be rewritten as

Zadj = exp

⎧⎨
⎩

∞∑
n=1

∞∑
k,i,j=0

qn

n
T ni

1 T
nj

2 (Tmq)nk
(
1 − T n

mT n
1

)(
1 − T n

mT n
2

)⎫⎬⎭ . (2.11)

Performing summation over n we get

Zadj =
∞∏

i,j,k=0

(
1 − qk+1T k+1

m T i+1
1 T

j

2

)(
1 − qk+1T k+1

m T i
1 T

j+1
2

)
(
1 − qk+1T k

mT i
1 T

j

2

)(
1 − qk+1T k+2

m T i+1
1 T

j+1
2

) . (2.12)

(b) |T1| > 1, |T2| < 1, |Tmq| < 1
In this region we expand (2.8) over 1/T1:

Zadj = exp

⎧⎨
⎩

∞∑
n=1

∞∑
k,i,j=0

−qn

n
T −ni

1 T
nj

2 (Tmq)nk
(
1 − T n

mT n
1

)(
1 − T n

mT n
2

)
T −n

1

⎫⎬
⎭ , (2.13)

which leads to

Zadj =
∞∏

i,j,k=0

(
1 − qk+1T k

mT −i−1
1 T

j

2

)(
1 − qk+1T k+2

m T −i
1 T

j+1
2

)
(
1 − qk+1T k+1

m T −i
1 T

j

2

)(
1 − qk+1T k+1

m T −i−1
1 T

j+1
2

) . (2.14)

Recently Iqbal, Kozçaz and Shabir [6] have computed the partition function of these
U(1) adjoint theories using the refined topological vertex formalism [12]. And, since
formula (2.8) was known to the present authors for quite a while, we performed detailed
comparison with their results. To make contact with the formulae of Iqbal et al we need the
following dictionary: Tm = Qm(t/q)1/2, T1 = 1/t, T2 = q, q = Q(q/t)1/2. In terms of these
variables, equations (2.12) and (2.14) take the forms

(a) |t | > 1, |q| < 1, |QQm| < 1

Zadj =
∞∏

i,j,k=1

(
1 − QkQk

mqi−1t−j
)(

1 − QkQk
mqit1−j

)
(
1 − QkQk+1

m qi− 1
2 t−j+ 1

2
)(

1 − QkQk−1
m qi− 1

2 t−j+ 1
2
) (2.15)

and
(b) |t | < 1, |q| < 1, |QQm| < 1

Zadj =
∞∏

i,j,k=1

(
1 − QkQk+1

m qi− 1
2 t j− 1

2
)(

1 − QkQk−1
m qi− 1

2 t j− 1
2
)

(
1 − QkQk

mqi−1t j−1
)(

1 − QkQk
mqitj

) . (2.16)

These equations come rather close, but certainly do not coincide with those given in [6] at
the end of the part 3.2. The reason for this discrepancy seems to us as follows. According to
[6] the refined topological vertex method for the 5D U(1) theory with adjoint matter leads to
(see equation (4.6) of [6]; below we omit the ‘perturbative part’

∏∞
i ′,j ′=1(1 − Qmq−ρi′ t−ρj ′ ))

Z =
∞∏

k=1

(
1 − QkQk

m

)−1
∞∏

i,j=1

(
1 − QkQk−1

m q−ρi t−ρj
)(

1 − QkQk
mqρi−1/2t−ρj +1/2

)
× (

1 − QkQk
mq−ρi+1/2tρj −1/2

)(
1 − QkQk+1

m qρi tρj
)
, (2.17)

where ρi = −i + 1/2. But four factors under the product over i, j have different, excluding
each other, regions of convergence. Thus this infinite product should be treated very carefully.
Unfortunately, the authors of [6] do not tell what analytic continuation procedure they have
adopted to pass from their equation (4.6) to those presented at the end of the part 3.2, but we
will demonstrate now that one perhaps the simplest approach directly leads to our conjectural
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formula (2.8). We simply examine the product over each factor separately within its region of
convergence and only after that continue analytically to a common region of the parameters.
Thus, for the first factor in (2.17) we have
∞∏

k=1

(
1 − QkQk

m

)−1 = exp
∞∑

n,k=1

(QQm)nk

n
= exp

∞∑
n=1

(QQm)n

n(1 − (QQm)n)
. (2.18)

For the next factor (assuming q < 1, t < 1)
∞∏

k,i,j=1

(
1 − QkQk−1

m qi− 1
2 t j− 1

2
) = exp

∞∑
n,k,i,j=1

−QknQ(k−1)n
m q(i− 1

2 )nt (j− 1
2 )n

n

= exp
∞∑

n=1

−Qnq
n
2 t

n
2

(1 − (QQm)n)(1 − qn)(1 − tn)
. (2.19)

Similarly for q > 1, t < 1
∞∏

k,i,j=1

(
1 − QkQk

mq−i t j
) = exp

∞∑
n=1

−QnQn
mq−ntn

n(1 − (QQm)n)(1 − q−n)(1 − tn)
, (2.20)

for q < 1, t > 1
∞∏

k,i,j=1

(
1 − QkQk

mqit−j
) = exp

∞∑
n=1

−QnQn
mqnt−n

n(1 − (QQm)n)(1 − qn)(1 − t−n)
, (2.21)

and, finally for q > 1, t > 1
∞∏

k,i,j=1

(
1 − QkQk+1

m q−i+ 1
2 t−j+ 1

2
) = exp

∞∑
n=1

−QnQ2n
m q− n

2 t−
n
2

n(1 − (QQm)n)(1 − q−n)(1 − t−n)
. (2.22)

Note that the rhs of above expressions are defined also outside of their initial convergence
region. Combining all these together we get

Z = exp
∞∑

n=1

(QQm)n
(
q

n
2 t

n
2 − Qn

m

)(
q

n
2 t

n
2 − Q−n

m

)
n(1 − (QQm)n)(1 − qn)(1 − tn)

, (2.23)

which in terms of the parameters q, T1, T2 exactly coincides with our conjectural result (2.8).
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